
Math 261 Class Quiz 10	Name: No Work ⇔ No Points	
	Use Pencil Only ⇔ Be Neat & Or	ganized
	Find $f'(x)$ for $f(x) = 2\cos^2 x^3 \tan x^3$. $0 > \chi^3 \cdot (0 > \chi^3 \cdot \nabla x) \chi^3$	$S'(x)$ = $\cos 2x^3$. $6x^2$
_	$\cos \chi^3$. $\sin \chi^3 = \sin 2\chi^3$	$\underbrace{S'(x) = 6 \chi^2 \cos 2\chi^3}_{1.}$
2. (5 points) Find $f'(x)$ for $f(x) = \frac{1}{2}(x^2 - 1)^{-2}$.		
S'(x) =	$\frac{1}{2}$, (-2)(χ^2 -1) 3.2 χ	226
=	$\frac{-2\chi}{(\chi^2-1)^3}$	$\int_{2}^{1} (\chi) = \frac{-2\chi}{(\chi^{2} - 1)^{3}}$
3. (4 points) I	Find $\frac{dy}{dx}$ for $y^3 = \sqrt{xy}$.	15 Y=0
y =	$\chi y = 5y^4 \cdot \frac{dy}{dx}$	= 1 = 30 = 0
0# P &T	$5=\chi$ $\frac{dy}{dx}=$	\mathcal{A}
4. (7 points) I	Find $\frac{dx}{dy}$ for $x^2y - xy^2 = 10$.	
$2x \cdot \frac{3}{4}$	$\frac{1}{4} \cdot 3 + \chi^2 \cdot 1 - \left(\frac{dy}{dx}\right)^2$	+2.29)=0
2xy = 3	$\frac{\partial}{\partial y} - y^2 \frac{\partial}{\partial y} = 2\chi y - \chi^2$	$\frac{dx}{dy} = \frac{2xy - x^2}{2xy - y^2}$
Page 1 of 1	Class Quiz 10	Total Points: 20
-		

Related Rates:

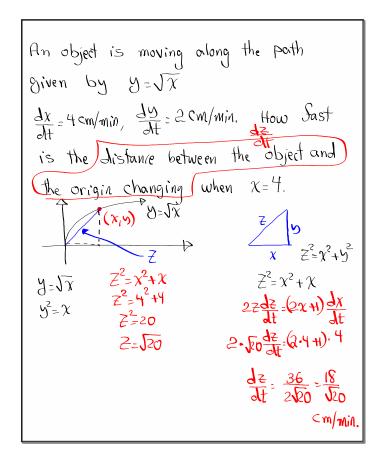
Let's say we have $x^2 + y^2 = Z^2$ and x, y, and Z all change with respect

to time. $\frac{d}{dt} \left[\begin{array}{ccc} x^2 + y^2 &= Z^2 \end{array} \right] \quad \begin{array}{c} x = x(t) \\ y = y(t), \text{ and} \end{array}$ $2x \cdot \frac{dx}{dt} + 2y \cdot \frac{dy}{dt} = 2z \cdot \frac{dz}{dt}$ Solve $\frac{dz}{dt} = \frac{x}{2} \cdot \frac{dx}{dt} + y \frac{dy}{dt}$

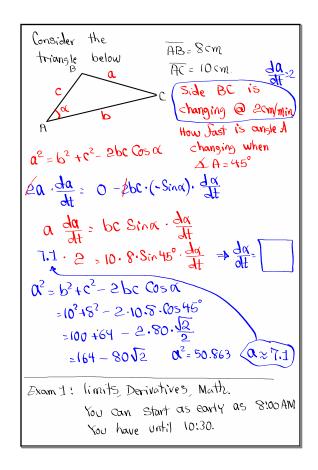
$$\frac{d}{dt} \left[x^{2} + y^{2} = z^{2} \right] \qquad x^{2} + y^{2} = z^{2}$$

$$2x \cdot \frac{dx}{dt} + 2y \cdot \frac{dy}{dt} = z \cdot \frac{dz}{dt} \qquad z = 5$$

$$4(-4) + 3(-3) = 5 \cdot \frac{dz}{dt}$$


$$-25 = 5 \cdot \frac{dz}{dt} \qquad \lambda z = -5$$

$$3t = -5$$


$$3t = -5$$

$$3t = -5$$

$$3t = -5$$

October 10, 2022

